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ABSTRACT

A prcblem of routing a U.S. Coast Guard buoytender to
service aids to navigation is formulated as a synmetric
traveling salesman prcblem. A heuristic algoritam is devel-
oped which seeks the minimum distance tour which can be
taken by the buoytender to visit the aids to navigation. A
user's guide is provided.

The algorithm is programmed in Convergent Technologies
FORTEAN for use on the Coast Guard Standard Terminal.
Several fprolklems are solved by the algorithm producing solu-
tions that are optimal or nearly optimal.
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I. INIRODUCTION {

Cne of the U.S. Coast Guard's missions is maintaining
aids to navigation in the waters of the United States.

These aids rejuire periodic servicing to ensure they are on
station and they are showing their proper watch characteris-
tics. The responsibility of maintaining many of these aids
falls on the Coast Guard's fleet of buoytenders. A buoy-
tender in its area of responsibility may have as many as 200
aids which it is required to maintain.

The buoytender has scheduled ATON rums (Aids TO )
Navigation) and emergency outages it must handle during a
fiscal year. An emergency outage occurs when an aid is !

reported by a mariner to be showing improper characteris-
tics or is missing from its station. These outages are
handled shortly after they are reported. Several tinmes
during the year the fbuoytender plans an ATON run to handle i

Ll

the periodic servicing of aids, to ensure that they maintain

L P 4

their prcper watch clharacteristics.
Prior toa scheduled run the tender will rzceive SANDS

forms from the unit's district office for each of the aids

which are due for service or relief. SANDS 1is a database

sk an oy o

where information is kept om a district's navigational aids.
The district's aids to navigation branch identifies aids

g

vhich are due for service or relief and notifies the tender.

The district provides a 1list of aids which need to be
serviced during the scheduled run and of work ne2ded on each
aid. The tender then makes plans accordingly to schedule

et 2 An am A o -fvv‘
. .

and complete the work.

B Al et

The numker of aids serviced on a particular scheduled

ATON run may be as few as 5 (a day of local work) to as many

as 70 (an extended four-week tri} servicing the west coast
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of Alaska from the Aleutian 1Islands to Point Hope). The
maintenance of the £floating aids and fixed structures
entails the travel of the tender from aid to aid. The tend-
er's Crerations Officer usually plans the initial route to
te travelled to service the aids due for routine maintenance
and presents his propcsal to the Commanding Officer, who may
then wmodify this prozosal.

There are several factors which go into the decision
process to produce tlre desired route. Two of these factors
are (1) which aids are scheduled for service, and (2) the
distances betveen the aids. The desired route 1is usually
the route of shortest distance which visits all the sched-
uled aids and returns the tender to her point of origin.
This proltlem is a classic problem which operations analysts
normally call ‘'the traveling salesman problem.' Present
route selection methods are (1) traditional or previously
followed routes and (2) routes created by Operations
Department personnel sitting down with chart and rule and
selecting a route.

It is the intent of this thesis to propose and implement
a computer assisted approach as an alternative method for
the lLuoytender route selection problean. The succeeding
chapters of this paper contain a discussion of the trav-
eling salesman problem and how it relates to th2 buoytender
problem, a brief survey of possible solution methods to the
problem, a description of the solution process of the
selected method, and the results of the route selection
Frogram with conclusicns.
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II. BATURE OF THE PROBLEN

In this chapter the principles of the traveling salesman
problem will be presented and it will be shown how the buoy-
tender froltlem can Le described as a traveling salesman
problem. The discussion will include a general description,
definitions about sclution methods, and the solution
requirements of the problenm. Further, a description of the
computing hardware on which the selected solution method is
programmed is provided. This provides an idea 2f the cafpa-
kilities of the hardware since the hardware has a bearing on
the selection of the solution method.

A. DESCRIPTION OF THEE TRAVELING SALESMAN PROBLEA

A rrief 3description of the traveling salesman problem
{or TSP) 1is as follows. A salesman has n cities he must
visit. The salesman starts in one of the «cities and must
travel so that he enters and departs each of the other
cities only once. Upon visiting the last city the salesman
will return to the city from which he originally started his

travels. The desired solution to the problem is the route
the salesman can traverse which is of the shortest total
distance possible.

It is usually assumed that a TSP can be associated with
some p by n distance matrix. The elemernts of the matrix,
du,
(j=14...,0n) ,and where dj{zo0, i=1,...,n. The traveling

are distances frou city i to city Jj, (i=1,...,0),
salesman is not allowed to leave city i and to return to
city i in his tour.

L TISEF can be associated with a graph, also. A city
which the salessan must visit is represented by a node in

10
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this gragih. There is an arc (i,j) in the graph with length
d/y for each node.

A distance matrix may be <classified as sparse or dense.
A sparse matrix will have a majority of its entries equal to
infinity. The corresponding gJraph is sparse since it has
few edges. A dense patrix is a matrix where a majority if
not all its entries, with the exception of the di 's, are
less than infinity. The number of possible permutations of
cities for a dense matrix is of order (n-1)!. Computation
time and memory required for solution by total enumeration
grows rapidly with the size of n due to the larje number of
possitle solutions, each permutation of cities being a
feasible tour and a fossible solution.

The distance matrix used by the buoytender for route
selection will be a dense matrix. With the large number of
perautations or possible solutions to the problen, some
means other than total enumeration nust be used to solve the
tuoytender froblenm.

The traveling salesman problem may be broken irtc two
classes, symmetric ard asymmetric. In a syametric TSP the
d;y =dji for all i¥#j, while in an asymmetric TSP this need
not ke true. Further, a TSP may or may not be required to
satisfy the triangle ineguality. Consider three cities 1,
j» k. The triangle inequality states that

diy < dik + dkg for all i¥j#k#i.
The ccnditions which make a TSP asyammetric, the unequal
distarces retween cities, may cause the problem to violate
the triacgle inequality.

The 1SP, both symmetric and asymmetric, belongs to the
N2 Complete <class of problems [Ref. 1,2]. This has one
major imgplication with respect to the coamplexity of solving
the TSP: no polynomial-time algorithas are known Or seeR
likely tc e devised for exact solution of the TSP. Caly
exponential-time exact aljorithms are known.

1
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There have been @many algorithms proposed for the solu-
tion of the TSP, each algorithm showing some advantages and
disadvantages to its method of attacking and solving the
problen. Several of the published algorithms are tailored
to a rarticular size of TSP. The TSP may be categorized by
size as either small or large. A reference could not be
found in the literature which would give a hard numerical
value by which the size of a TSP could be judged, tut a
small TSF is generally considered to be less then 15 cities.
A large ISP is often considered to be in the neighborhood of
45 or more cities. There are solution methods which solve
the TSP exactly for small up to large probleams. There are
some methods which can solve some large problems exactly,
but as a rule large froblems are solved with heuristics or
approximate methods.

The circumstances of the buoytender problem satisfy the
conditions of a class of the traveling salesman [froblem.

The kuoytender problem can be characterized as a symmetric
ISP, i.e., the distance traveled between any two aids is the

same regardless cf direction travelled by the tender. The
size cf ltuoytender problem will vary with the number of aids
scheduled to ke serviced on a specific ATON run; therefore
the solution method for the Luoytender problem will have to
handle bcth small and large probleams.

The triangle inegquality as applied to the buoytender
problem holds true, Lut hov it holds needs some 2xplanation.
With all distances positive, the triangle inequality states
that given three points A, B, and C, the distance from A to
C must e less than or equal to the distance from A to B
Flus the distance from B to C (see Figure 2.1). In the
Fuoytender's problem the straight-line distance from A to C
may ke less than (A to B) + (B to C), but some situations
will reguire that A to C equal (A to B) + (B to C) (see
Figure 2.1),

12
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Figure 2.1 Triangle Ineguality / Obstructed A to C Path

The Lbuoytender may be unable to take the direct coute from A
to C due to shoal water or an obstruction. To get from A to
C the tender will have to take the routes A to B and B to C.
This is not an unusual situation for buoytenders since the
aids teing serviced cften mark shoal water or obstructions.

B. LCESCRIPTION OF TEBE SOLUTICN REQUIREMENTS

There are many proposed solution amethods to the TSP and
they may be divided into two groups: exact methecds and
approximate or heuristic methods. An exact method or algo-
rithm has the property that wupon termination of the algo-
rithn, the user will have the best possible or glokal
optimuz solution. Heuristics or approximate methods, on the
other hand, terminate with a local optimum solution or the
test solution found thus far. This local optimum solution
may be the global optimum but usually there is no proof that
the global optimum has been found.

mate methods solve Ly checking a subset of the numerous

Heuristics or aprroxi-

Fossible solutions and terminate when the subset has teen
searched for the best answer it contains, a specified tinme

13
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limit for the run has beer reached, or the memory capacity
of the ccmputing machine has been reached.

A further consideration in selectiny a method to solve
the TSP is that there should be very little interactive work
for the user. The user interactive work necessary to
operate the program =should be understandable to a majority
of the intended users, who in this case are the buoytender's
Operations dfficer or Navigator, and Quarternaster
personnel. By requiring the interactive work to be mininmal
and simple in nature the possiblity of operator introduced
error will Lte reduced. Further, if the interactive vork is
of a simple nature, the program will be wuseatle by a
majority of the intended users without extensive training.

Although it is desired to obtain the global optimum, it
is not mandatory. The computer route selection method is to
be a tool wused in plamnning, and the exact solution is not
critical to the operation of the buoytender. By using
heuristics, computer time and memory may be reduced since a
heuristic generally searches only a subset of all possille
solutions. If a computer solution can be produced which is
ketter than the traditional route or a route produced by
hand calculation, then a goal has been met, that goal being
reducing the total distance traveled by the tender thereby
saving fuel and tinme. The computer solution is then a
viable alternative ¢tc be added to the present methods of
route selection.

C. CCHPUTING HARDWARE

The computer on which the selected solution method is
programned is the Coast Guard's C3 Standard Terminal. The
reascn for selecting this computer is that it is presently
reing installed throughout the Coast Guard as a primary
unit-level computer. Most intend users should have access
to a C3 Terminal.

14
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The C3 Standard 1Terminal is a standalome 16 bit amicro-
computer. The terminal comes in two basic configurations,
the Integrated Work Station (IWS) and the Application Work
Staticn (AWS) . The IWS is a master or standalone unit
equipred with a hard disk and 8 inch floppy mass storage
system, a 390/1200 baud modem, a printer, and one of three
RAM memory configurations - 256k, 384k, or 512k. The IWS
may Le programmmed in BASIC, FORTRAN, COBOL, Pascal, and
Assenmkly. The AWS is more limited in its capabilities than
the 1IWS. The AWS is limited to 256k RAM and must be
networked to a IWdS station to access the peripherals. With
a proyram in RAM the AWS will operate as a standalone
computer, but does not have the power or computational speed
of the IkS.

The solution method selected for programming will have
to perform within the limitations of the C3's memory. The
C3's FAM memory will be a «critical factor in selection of
the sclution method. Since the computer 1is a purchased
standalone and not a leased system, CPU time should not te a
critical factor. It is still desired, though, to keep CPU
time from recoming excessive since the «computer is also
needed fcor cther work. The computer could be allowed to run
overnight (off duty hours) for largje problems, and therefore
a soluticn method requiring more than 12 hours to provide an
acceptaple solution would be excessive. A solution method
which provides an answer in under an hour could be run
during duty hours with very 1little impact on other users,
particularly if it was run on a slave terminal.

In the next charter we take a brief look at some
sugjested sclution methods for the TSP and their applica-
bility to the buoytender problen.

15
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‘ III. A BRIEF SURVEY OF SOLUIION METHODS FOR ZHE ISP

In this chapter a brief survey of the general solution
aethods for the TSP and some of their associated algorithms
will Le presented. The number of algorithms proposed for
solving the TSP is extensive. To present all of the avail-
able algorithms or tc discuss them in detail is worthy of a
dissertation in itsel:f. This survey of solution methods is
nade Lecause a combination of a couple of the methods will
ke used to solve the buoytender problenm. This survey will
e brief in nature presenting the general solution amethods
ard briefly describing some of the more popular of published
algoritams which fall under these solution method headings.?!

The solution methods may be classified under four
general headings. These headings are Tour Building, Subtour
Elimination, The One-TIree Formulatioan, and Tour Improvement.
These bheadings describe how the traveling salesman problen
is apgroached.

A. TCUR BUILDING

Tcur Building solution methods to construct a tour using
the n ncdes and the available arcs in the problen. Tour
Building contains both exact and approximate algorithums.
Some of the approaches takem by Tour Building Algorithas to

i’ solve the TSP are dynamic programming, ‘'branch and bound'
s methods, and tour construction heuristics.

{

[

L e m— e ——————

L 1Three _excellent articles [Ref. 1,3,4] have been
- publisted which describe the TSP, _discuss general solution
.. pet hods and review many of the algorithms which sclve it.
- These three articles review the reSearca conducted on the
® 1SP froa the mid 1950's up to 1983.

16
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Held and Karp [Ref. 5] present a dynamic programming

approach which 1is suitable for small problems and can be
modified to an approximate method for larger provleams. The
dynamic programming approach rapidly consumes available
memory as the size of the problem increases. Due to memory
limitations, the algorithm Held and Karp presented is exact
only up to 13 cities. They also present a dynamic program-
ming method which aprroximates the solution for larger prob-
lems. The approximation is done by partitioning the large
Froblem into several smaller problems or subproblems, each
subprobleam containing 13 or fewer nodes. Each partitioned
subproblem is solved for its optimal tour resulting in a set
of suktours for the original problem. The subtours are then
broken and 1linked to each other to provide a tour for the
original large problen.

Little et al. (Bef. 6] present a branch and rLound
method. The algorithm branches on whether a particular arc
is included or excluded from the tour being constructed.
This traschiny partitions the solution set containing all
tours into subsets. Each arc in the total graph can be
associated with s~me subset of tours, and the idea 1is to
find the subset containing the optimal tour. For each
subset of tours, a lower bound is computed for the tours
within the subset. The tour 1is constructed as arcs with
favorable lcwer bounds are included in the tour. The algo-
rithm continues branching and computing lower boands until a
subset 1is found which contains one tour and this tour's
distance is less than or equal to the lower bounds of the
other sulsets of tours. This tour will be the optimal solu-
tion to the TSP. The memory reguired for this technique nmay
te extensive and comruting time grows exponentially with the
size cf the problen.

Many tour construction heuristics have been proposed.
Rosenkrantz, Stearns, and lewis [Ref. 2] and Golden et al.




[Bef. 4] review cseveral of these heuristics. The two most
popular forms of these heuristics are the nearast neightor
. algorithm and the insertion technijues.

The nearest neighbor algorithm operates exactly as its
name implies. A starting node is chosen and its nearest
neightoring node is selected as the next node in the tour
teing constructed. The algorithm then iteratively selects a
node not yet in the tour which is nearest to the previously
selected node to enter the tour. This selection continues
until all nodes have been selected and then the 1last node
selected is connected to the first node to complete the
tour.

The insertion techniques include the nearest, farthest,
cheapest, and arbitrary imsertion algorithms. Insertion
technigques kegin with a starting node and select the nearest
node to create a subtour. The algorithm iterates selecting
a node which is nearest to or farthest from any other node
in the subtour, or arbitrarily selects the next node to
enter the tour. This selected node is then inserted into
the suttcur wherever it provides the least increase (or in
the case of the farthest, the greatest increase) in distance
in the new subtour. These heuristics generally provide a
suboptimal solution to the TSP, but they have the advantage
cf being very simple to implement and have very fast solu-

tion times with wminimal memory consumptioa.

B. SUBTOUR ELIHINATICHN

The Subtour Elimination solution aethod [Ref. 1] attacks
the TSP by solving an n by n assignment problem with the
added constraints that the final solution must contain a
cycle and the cycle cannot be of size n-1 or less. The

number cf integer constraints necessary to elimirate all
subtours or cycles of size n-1 or less 1is enormous.

18
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Therefore, the initial solution is generally found using a
‘relaxed' form of the assignment problen. The relaxed
assignment problem cmits the subtour constraints in its
formulation.
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Mathematically stated the relaxed assignment problenm is

win B oxij g

{30 jl'

s.T.  Pxg =1 i=1,2,...,n
i?' xi_j =1 j=1.2...-'n
where Xij =0 or xz; =1

The solution to the relaxed assignment problem provides
the initial lower bound on the optimal tour length. If the
optimal assignment sclution is a tour then it is an optimal
soluticn to the TSP. If the assignment solution is not a
tour then there exist subtours which must be removed until a
single tour exists. If a subtour exists with k arcs in the
subtour, then there are k possible subproblems to which the
Froblem may branch. These k subproblems each have an addi-
tional constraint, the constraint for subprotlem i
(i=1,...,k) being the exciusion of arc i from the problem to
€liminate the subtour. 1Instead of branching into k subrrob-
lems the aprroach is to branch into two subproblems. An arc
is selected from the subtour and the exclusion of this arc
Lecomes a new constraint in one of the subproblems while
inclusion of the arc in the tour becomes a new constraint
for the alternate subproblen. The modified assignment
problem is solved again for each of these new constrainats
and provides the lower bound for its respective branch. In
this way only the necessary subtour elimination constraints
are added as needed to the assignmeat problem, rather than
attemrting to add all possible subtour constraints to the
initial assignment [froblenm. Ideally the branch solution
subset with the lowest bound is then selected to re tested

19
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N to see if it is a tour, and, if it is not, the prcblem
\‘l. 3 . .

oy tranches again on the lowest bound. This branching

. continues until all subtours have been eliminated and a tour
is found which has a distance less than or equal to the
lower bounds o2f the cther solution subsets.

There are two lasic methods for searching the tree
created Lty the tranch and kound process. One method is a
breadth-first search. As the program is branching and
computing bounds, a tree is created with leaves or terminal
nodes. A breadth-first search requires storage for the
soluticns of each leaf and a search through these leaves for
the next subproblem on which to branch. This requires
extensive, usually exponential, storage. Branching at the
lovest bound requires a breadth-first search. The second
method for searching the tree is a depth-first search. The
depth-first search is a more localized approach to handling
+he search. The depth-first search need only store the
immediate sclution while searching a branch. If during the
search it is found that no further branching is possitble

from the current node, the process must return to a previous
leaf to continue the search for the optimal tour. The
depth-first search kacktracks and recreates the previous

E!l solution at that leaf. The depth-first search does not

L require exponential storage like the breadth-first search,

E‘_ kut it usually requires more computation time.

:j The subtour elimination method is described as Leing

5; exact. The subtour elimination method usually requires less

g_f computation time than the branch and bound approach of

Eﬁ} little et al. since the bounds obtained with the assignment

o relaxaticn are tighter.
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C. TEE CNE-TREE FORBULATION

The one-tree formulation was introduced and ieveloped by
Held and Karp {Ref. 7,8]. The general method for the solu-
tion of the TSP begins with the construction of a minimum-
weight ‘'cne-tree.* 1If the one-tree is not a tour then an
integer linear program may be used to oktain the final solu-
tion.

To assist in the description of this solution method
several terms need defining. First a tree is defined as a
connected graph without cycles. A minimum-weight spanning
tree is a tree with minimum total weight on its edges. A
one-tree is a tree to which one edge has been added yielding
exactly one cycle. A ainimum-weight one-tree is a one-tree
with minimum total weight on its edges. Finding a minimum-
weight one-tree 1is a relaxed version of a TSP since the
soluticn to a TSP is a minimum-weight one-tree having every
vertex of degree two.

In the solution method proposed by Hell and Karp

[Ref. 7] the algorithm begins by constructing a minimunm-
weight one-tree. A nminimum-weight one-tree can ke can be
found by first constructing a minimum-weight spanning tree
thkrough nodes 2 to n and then adding to the graph the two
arcs of least weight from node 1 [Ref. 9], A @pinimum-
weight one-tree may also be constructed by constructing a
minimum-weight spanning tree through nodes 1 to n and then
add to the graph the next minimum-weight edge not yet used
from the distance matrix. If the one-tree constructed is a
tour (i.e. the one-tree's vertices are all of degree two)
thken the TSP is solved. Otherwise, the one-tree must be
converted into a tour.

Integer linear programming is used to obtain an optimal
tour if the one-tree foraulation Jdoes not satisfy a tour.
Held and Karp introduce the concept of a 'gap' function and

21
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then use a special integer linear projram to minimize this
function. In essence there is a transformation on the one-
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tree variables which allows the integer linear program to
search for the optimal tour. Held and Karp suggested two
methods for optimizing the integer linear program, an ascent
method and a branch and bound method with the ascent method

}.

embedded in 1it. Other improvements to the Held and Karp
method were suggested by Hansen, Krarup [Ref. 10] and Houck,
Picard, Vemuganti [Ref. 11], Bazarra and Goode [Ref. 12]
did further work on Held and Karp's approach using optimiza-
tion of a lagramgian dual in lieu of solving integer linear
program. They proposed a branch and bound scheme with subg-
radient optimization of the dual to transform the one-tree
into the optimal tour. The one-tree method as described is
exact and may reguire extensive computation time.

D. TCUR IMPROVEMENT

The Tour Improvement method assumes that an arbitrary
tour is available. The method operates by perturbing or
exchanging arcs in the tour until a better tour is found.
The Tour Inprovement method terminates when a better tour
cannot be found. in its simplest form, it is possible for
this method to check (n-1)1!/2 arc exchanges for the symme-
tric TSP before terminating (i.e., it investigates all
availakle answers).

Dantzig, Fulkerson, and Johnson [Ref. 13,14] proposed a
algorithm which starts with an arbitrary tour and  uses

LC integer linear programming to improve the tour. The TSP is
- transformed into an integer linear program and solved using
the simplex method. Dantzig, Fulkerson, and Jchnson
o [Ref. 15)] mention that the number of constraints needed to
characterize the protleam is 'astronomical.' Instead of using
all the constraints, they begin by using a relaxed version

s Auman e 4l 40 S SO w am and
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of the problem and . 3d constraints as needed to the integer

linear program to maintain feasibility. In their amethod
infeasibility appears as 'loop' or subtour. To continue
solving the problem a constraint is added which removes the
subtcur yet does not eliminate any of the available tcurs.
This algcrithm requires the addition of constraints during
the soluticn process to maintain feasibility. Several
researchers have suggested improvenents on Dantzig,
Fulkersor, and Johnson's method for solution of the TSP.
(Ref. 16,17,18,19]

Croes [Ref. 20] proposed a heuristic whereby a subset of
all rossible transformations is tested, a transformation
keing the transformaticn of one tour into another tour. He
called these transformations tinversions' because they
inverted the sequence of nodes in part of the tour to create
a possiktle improvement. Lin [BRef. 21] later descriles Croes
'‘inversicn free tours' as 2-optimal tours and goes on to
describe k-optimality where k is some fixed number less than
n. The general idea is to exchange k arcs iteratively in
the tour while testing for improvements. Lin and Kernighan
[Ref. 22] presents a modified k-opt algorithm where k is not
fixed. In this algorithm k may vary from 2 to n. The
floating k-opt algorithm is also described by Christofides
and Eilon. [Ref. 23]

The advantage of the ‘tinversions' or k-opt solution
method is that for a givem problem, the memory needed to
solve the problem is fixed. There are no constraints which
must re added to the froblem, and the decision rule used is
simple. The k-opt method is exact, but may be terminated
before optimality is reached to provide a satisfactory
{suboptimal) solution. This generally reduces run time and
still provides a gocd solution to the problen. The k-opt
method may also be rrogrammed to regjuire very little user
interaction; 1in the Lkest case the user need only enter the
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distance matrix for the nodes desired in the tour. The
_ k-opt algorithm may require extensive computation tine,
13“ . particularly if during solution k is found to Le greater
a than 2 or many of the iterations.

This chapter has presented a general survey of some the
solution methods for the TSP and some algorithas associated
with these solution methods. The next chapter will discuss
which of these solution methods were employed to solve the
bouytender rroblen. The buoytender routing algorithm will
then Le presented and discussed in detail.

- LA A N L
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IV. BOOYTENDER ALGORITHM

This chapter will discuss the algorithm with which we

(ol

X

Z, propose to solve the buoytender problen. The reasons for

hii the algorithm's selection and some background oan its devel-
- opment will be presented, together with a detailed descrip-

tion of how the algorithm addresses the buoytender problean.

h A. AlGORITHM SELECTICN

E The algorithm is a combination of two of the previously
{ mentioned solution methods in that it combines a Tcur
- Building heuristic with a Tour to Tour Improvement
‘. heuristic. The ccncept of combining a Tour Building
heuristic with a 2-cpt or 3-opt heuristic was proposed by

Golden et al. [Ref. 28] as a relatively fast computational

solution method which would provide an optimal or near
optimal tour. Their 'composite' alyorithm is the foundation
on which the buoytender algorithm was developed.

The heuristics used in the buoytender algorithm are the
nearest neighbor algorithm and the k-opt algorithm. The
nearest neighbor algorithm is used to construct an initial
tour while a versicn of the k-opt proposed by Lin and
Kernighan [Ref. 22] 1is used to improve this initial tour.
The nearest neighbor and k-opt heuristics were selected for
use in the buoytender algorithm because very little interac-
tive work is required, the interactive work is simple, no
constraints need to re added to maintain feasibility, comfpu-
tational time is reasonable, and the algorithm operates with
a fixed amount of memory.

The Luoytender algorithm as presented reguires very

little user 1interaction.

The nearest neighbor algorithm

..........
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needs only the entry of the distance matrix for the prcblenm
and the selection of a starting node. The k-opt algorithm

. needs the same distance matrix and an initial tour. The
heuristics® decision processes will provide a feasible and
Fossikly optimal solution in a reasonable period of time.
The nearest neighbor algorithm was selected to construct the
ipitial ¢tour because it is computationally faster than
insertion techniques, and provides a good initial solution
to the problem. [Ref. 25]

A critical factor in solving the ISP on a microcomputer
is the memory required by the algorithm used. The amount of
memory regqguired for solution of a TSP of size n is fixed for
the nearest neighbor and k-opt bheuristics. With known
memory requirements for the heuristics, a program can be
developed tc f£fit the Coast Guard Standard Terminal. The
nearest neighbor algcrithm requires an n by n distance
matrix and an n arrary in which to store the tour as it is
constructed. The k-cpt algorithm requires the same storage
as the nearest neighltor plus a n by n decision matrix, and a

2n array for recording nodes selected for inversion in the
tour. J

B. PROGRAMBING THE AILGORITHM

ol M i

The ruoytender algorithm was developed as a series of

L

modules which were then programmed as subtroutines in the
operating progran. The algorithm was programmed in FORTRAN
for oreration on the Coast Guard Standard Terminal. FORTRAN i
was selected because it is efficient and a majority of
Frogrammers are familiar with it.

There are some differences between the heuristics in the

2
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e

literature and the buoytender algorithnm. The nearest
E* neightor algorithm as used by the buoytender algorithm is
# the same as outlined by Rosenkrantz, Stearns, and lewis
!
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[Ref. 2], The k-opt heuristic used in the buoytender algo-
rithm is a modified version of the heuristic presented by
lin and Kernighan [Ref. 22]. There are three major liffer-
ences between the k-cpt in the bouyteander algorithm and the
k-opt suggested by Lin and Kernighan. First, the Lin and
Rernighan k-opt heuristic selects all possible nodes which
will result in a shcrter tour before creating the iaproved
tour. The buoytender algorithm improves the tour by
exchanging nodes whenever a favorable selection is found.
This improvement-as-ycu-go procedure results in a simplifed
selection process for the next set of nodes to be tested.
Second, the Lin and Rernighan k-opt heuristic has an added
facility for ‘'limited backtracking' used when a particular
exchange gives an improvement of zero. The backtrackinyg
procedure searches wuntil a gain greater than zero can be
found which imprcves the tour. In the interest of short-
ening computational time, the buoytender algorithm does not
*backtrack®' when a gain of zero is found, but instead treats
zero gain as no improvement and continues with the next
selection. The third major difference between the Lin and
Kernighan k-opt heuristic and the buoytender algorithm is
related to what Llin and Kernighan call ‘reduction.' Their
heuristic, after producing several locally optimal tours,
checks fcr arcs which appear in each of the tours. These
'good' arcs are not allowed to be broken in further comruta-
tions for other locally optimal tours thereby reducing the
cumber of links to be checked for improving the tour. While
decreasing run time, this procedure requires more memory and
is therefcre omitted from the buoytender algorithnm.

The ruoytender algorithm can be divided into three tasic
operations. First, the algorithm selects a random sample of
Xk nodes, k<n. This random sample of nodes becomes the set
of starting nodes for the next major operation in the algo-
rithn, to create k nearest neighbor tours. The third

27
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operation is to use the k nearest neighbor tours as initial
tours for the k-opt improvement. The best of the k-opt
improvement tours is presented as the solution to the

Froblenm.

A further modification was made to the algorithm tased
on some computational results obtained from use of an early
version of the algorithm. During programming of the tuoy-
tender algorithm several benchmark statistics were cobtained
from the prcecgram. Two of these statistics were the initial
tour distances produced in the nearest neighkor phase, and
the distances of the final tour solutions produced by the
k-opt rhase of the algorit hn. There seemed to be a rela-
tionship between the tour rroduced by the nearest neighbor
phase and the improved tour produce by the k-opt phase. A
least-squares linear fit of the initail tour distance vs.
the final tour distance was done for four data sets. In
each case the fit prcduced a positive slope. This imglies
for a relatively large nearest neighbor tour, the final tour
from the k-opt phase will be relatively large. A relatively
small nearest neighbcr tour will produce a relatively small
tour frcm the k-opt rhase. Using this information the Luoy-
tender algorithm was further modified to reduce computation
time without compromising too much of its ability tc produce
optimal solutioas. For a set of k nodes, k<n, the nearest
neighbor algorithm provides k initial tours. The set of k
nodes is selected at random from the population of n nodes.
Then for a set of L ncdes, L<k, the k-opt algorithm is run
to obtain L final tours. The set of L nodes are drawn from
the k nodes which [froduced the L shortest initial tours.
The shortest final tour from the L final tours produced by
the k-opt phase will be the algorithm's solution to the
problen. The final version of the algorithm has a greatly

reduced operating time over the initial version.
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C. AIGORITHM DESCRIPTION

In this section, a detailed description of the tuoy-
tender algorithm is given. In this description references
will ke given to the [rogram subroutines so that the reader
may associate the portion of the algorithm under discussion
with its operational counterpart in the progran.

The tuoytender algorithm begins by reading a file from
mass storage containing the number of aids (nodes) in the
Froblem, the distance matrix, and the names of the aids
(subrcutine OBTAIN). A program MATUTL.FOK, which assists
the user in creation of this data, can be found after the
listing of the tuoytender route selection progranm,
BROUTE.FOE.

After olktaining the data the algorithm selects a randon
sample of nodes, based on the size of n, from which it will
create tours (subroutine NODE). The function which selects
the size cf the raadcm sample is

Sample Size = 5 + [2( Log{ n-4 ))\ .

The function is designed to capture almost the entire popu-
lation for testing when the problem is small and to cafpture
only a small portion of the population being tested when the
problem is large. This produces a sample size which
increases the probatility of obtaining the glotal optimum
when the rroblem is small yet produces a sanmple size which
will paintain reasonaltle computation times when the problenm
is large.

After determining the sample size, a random saaple of
nodes is taken. Since there is no random number generator
for FORTRAN installed on the Coast Suard Standard Terminal,
a pseudo-random number generator was added to program (func-

tion EKANDOM). The coding for the generator comes fron
Wichmann and Hill [Ref. 26] ; it is described by its
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- authors as an efficient psuedo-random number generator
having a cycle length of 2.78 x 1013 ., Nodes are sampled at

:I . randon without replacement from the integer population of 1

ton for use as starting nodes for the nearest neightor
phase.

X The algcrithm then moves into the nearest neighbor phase
' (subroutine NBR). A tour is created for each node in the
randcm sample, with the node from the sample as the starting
node of the tour. Tke algorithm selects the nearest node to
the starting node for the next entry in the tour construc-
tion. The algorithm then iterates selecting a node not yet
in the tour wiuich is nearest to the previously selected node
as the next entry in the tour. This process continues until
all nodes have been selected, at which time the last node is
connected to the starting node to complete the tour, and the
tour distance is computed. After all the initial tours have
been constructed they are ordered by their total distances
from shortest to 1lcngest. The five shortest tours are
retained for possible improvement in the k-opt phase.

A decision matrix is <created which designates waich
distance arcs in the distance matrix are presently members
of an initial tour (subroutine MARKD). The algorithm then
proceeds to step through each node of the tour testing it
for k-optimality.

The tour 1is ‘prepared* at each node to ke <checked for
k-optimality (subroutine TRPREP). This process simplifies
some of the later operations. Here, it 1is helpful to

consider the tour as a circle with n postions on its circum-
- ference (see Figure 4.1), and to 1let positions on the
- circular tour be denoted by p(i) where i=1,...,n. A node in

. A a_a_a_ o=

the tour is represented as a position on the circle. TRPREP

{ places the starting node in p(1) and places the remaining .
,7 nodes in the tour at p(2) through p(n) where (i) is the .
; node's pcsition in the tour.

g
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Figure 4.1 Circular Representation of a Tour

Since floating k-cpt algorithm is in essence a series of
2-opt iterations a description of the siampler 2-opt prin-
ciple will Le presented first. Figure 4.2 shows the 2-opt
principle in graphic detail. 1In Figure 4.2 (A), the tour is
represented in circular fora. The tour is now perturbed to
try apnd find an improvement. To perturb the tour in the
2-opt procedure, tvwc arcs will be broken in the existing
tour and two new arcs will be selected as incoming to form a !

new tcur. This provides a gain fuaction which can be used
to ckeck for improvement. Tbe gain function is

G = .‘i:'.(broken arcs) - j‘(inconing arcs) .
If G is positive this set of arc exchanges will improve the

tour.

Tc perturb the tour, one of the arcs incident to node
being checked for 2-optimality must be broken or removed
from the tour. In the buoytender aljorithm the node reing
checked for k-optimality will always be in p(1) of the
circular tour and the arc being broken will always be
e tetween p(1) and p(2) of the circular tour. Am incoming arc
nust then Lte selected to replace the broken arc. This ]
incoming arc must Lte selected rom those arcs with a
starting node which is the same node as the end node of the
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is in general the shortest available arc, but may be any of
the available arcs which maximize G. This subtour must be
troken and another incoming arc must be selected sc¢ as to
reconstitute a tour. Therefore, one of the tour's arcs
incident to the end node of the first incoming arc amust be
troken. The end node in Figure 4.2 (C) is at p(7). There
is only cne of two possible tour arcs which may be broken to
allow the incoming arc to become part of the tour. Figure
4.2 (D) =shows the selection of the wrong incident tour arc
for removal. The Ltreaking of this arc and the sutseguent
reconnection to the ncde being checked for 2-optimality does
not result in a tour. Instead, two subtours are created
giving an infeasible situatiomn. Figure 4.2 (E) shows the
kreaking of the proper incident arc and subsequent recornec-
tion tc the original node to create the ‘'improved tour‘.
Also notice that some of the arc directions in the original
tour must be reversed to provide a consistent direction of
movement through the tour. Reversing these arc directions
is the =ame as inverting a sejuence of nodes in the tour.
The result is shown in Figure 4.2 (F) as a new ‘'improved?
circular tour.

The 2-opt procedure is carried out using each node in
the tcur as the starting node checked for 2-optimality. One

interation of the 2-cpt procedure through all n nodes will
produce a tour which is 2-optimal.

rrsa oy,

The k-ort algorithm is very similar to the 2-opt froce-
" dure descriied abtove. Instead of just reconnecting the tour
4 as the 2-opt procedure does (p(6) to p(1)), the k-opt checks
to see if another incoming arc, starting at the end ncde of

ML e et g
. o

the last broken arc, can be selected to further improve the
.‘ tour (Figure 4.3). The procedure interates until no further
improveaent can be fcund. A k-opt, using an example with k
€gqual to four, might look like Figure 4.4 The floating k-opt
algorithm has the ability to vary k during the X-opt

My e umh uie auh auh o
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FPigure 4.3 K-opt Selecting Next Incoming Arc

Figure 4.4 Example of 4-opt

solution process. This is more desirable than fixing k in
the soluticn process. For example, if k were fired at four,
the algorithm can only check four arc exchanges for improve-
ment but the problem may need a five arc exchange to produce
the optimal solution. By allowing the k-ofrt to vary k, the
probability of the algorithm finding the optimal solutionm is
increased. The floating k-opt is bounded between
2-optimality and n-optimality. The k-opt cannot be greater
than n-optimal because an n-opt exchange creates the optimal
tour.
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;f. The k-opt procedure in the buoytender algorithm operates
. Ey checking each node in a tour for k-optimality. The algo-
rithm, using subroutine TRPREP, creates the circular tour
for the node being checked for k-optimality. The circular
tour is frepared so that the initial arc being broken will
alvays Le Letween p(1) and p(2). The algorithm checks the
circular tour at the starting node for k-optimality. If no
improvement can be made breaking the first arc between p (1)
and p(2) then the «circular tour's direction is reversed
(subroutine REVTOR) so that the alternate incident arc is
placed between p (1) and p(2) of the circular tour and this
tour is checked for k-optimality.

The kreaking of the arc between p(1) and p(2) requires
an inccming arc to replace it (subroutine SELCTY). The
algorithm selects the five shortest available arcs which

originate at position two of the circular tour and terminate
at ancther position on the circular tour. The arc from p(2)
to p(3) is not available since it is already in the tour,
and the arc from p(2) to p(1) is not available since it is
the arc just broken to improve the tour. For each of the
selected incoming arcs another arc must be broken to elimi-
nate a subtour (as in the 2-opt procedure). It 1is then
necessary to reconnect the arcs to reconstitute the tour.
This results, £for each of the selected arcs, a set of two
incoming arcs and two outgoing arcs. Using the previously
: defined G, each of the five sets of arcs is checked to see
"7 which maximizes G. If G>0 then the exchange or inversion is
N made (sukroutine ADJTCR), otherwise no exchange is made.

f;ﬁ If an exchange is made the algorithm goes back and
searches for a new incoming arc from the end point of the
l‘ last troken arc. Sukroutine ADJTOR has inverted the tour so
that the last arc used to reconnect the tour is now between
p(1) and p(2) of the circular tour. Subroutine SELCIY is
ajain used to select the next best available incoming arc as
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_‘_ described atove. The algorithm interates through selecting
f{? an incoming arc and inverting the tour as 1long as imfrove-
tﬁ . ment, i.e. rositive gain, can be found.

When improvement can no longer be found the direction of
the tcur is reversed at the last node where improvement was
found, and the tour is tested again for possible further

B improvenment. When nc further improvement can be found and
the reversed tour has also been tested, the algorithm then
increments to the next node in the tour and starts the k-opt
procedure again testing this ncde for k-optimality. Each
node in the tour is used as a starting node in the k-opt
procedure. When all nodes in the tour have been tested for
k-optimality the k-opt phase ends and the resulting tour is
stored.

After each of the five shortest initial tours have been
tested for k-optimality, the shortest of the improved k-opt
tours is selected as the solution to the buoytender rrotlen.
Figure 4.5 is a flowchart of the buoytender algorithnm.

The next chapter discusses the results of some test
problems solved by the algorithm and makes concluding
renarks akout the algorithm.
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V. PROGEAM RESULTS AND CONCLUSIONS

This chapter will discuss some results obtained fron

using the luoytender route selection progranm, including

results from an actual problem from the U.S. Coast Guard
Cutter BLACKHAW. All program results were obtained using
the Cocast Guard C3 Standard Terminal. The chapter will
conclude with some ocbservations regarding the bucytender
proklem, the algorithm, and the test results.

et e ek di ek

A. FROGEAM RESULTS

To program and test the buoytender algorithm it was

necessary to obtain rroblems with known optimal solutions.

it et

Initially, a very simple and small problem with nine nodes
was created. This test problem's optimum tour is the most j
obvious tour obtained by inspection of the problem since the y
nodes are arranged in an almost circular pattern. *
Connecting these nodes following this nearly circular path
results in the optimum solution. Several alternate tours
were checked by hand computation and were found to be subop-

timal. Therefore, the near circular path for this test

PRIPU W W

ﬁﬁ problem is assumed tc be optimal. When the program was

» tested with this test problen, the program produced this

;; hypothesised optimum solution with a computation time of 13 '
- seconds. *
é, With the knowledge that the program appeared to re oper- ]
i ating correctly on tte initial test problem, further testing

o was necessary to check the rrogram's ability to solve other d
¢ problems. Since the ftuoytender route selection problem is a !
i symmetric case of the TSP, the literature was searched for

; test fprollems. Three articles [Ref. 5,20,27)] yielded eight

. 1
€

X 40

g




symmetric TSP's of various sizes. These eight literature
problems ranged in size from 5 to 57 nodes with known
optimal ansvers. The program, when tested with these fprob-
lems, Fproduced solutions which ranged from the optimal to
witkin 3.5 percent of the ofptimal distance.

Another problem was created by the random selection of
70 pcints on a Euclidean plane. A distance matrix was
computed for these 70 nodes and this problem was solved by
the fprogranm. The problem's optimal solution is not known,
Fut the rroblem was run to ensure the program could handle
the @maximum problem for which it was designed, and to
produce a sample solution time for this maximum sized
Froblenm.

With evidence that the program was solving test prob-
lems, a further test was conducted using an actual tuoy-
tender routing problem, with data provided by the U.S. Coast

Guard Cutter BLACKHAW (WLB-390), homeported in San
Fransiscc. The aids to navigation run data was for a trip
scheduled from 9 April 1984 to 16 April 1984. With the

experience and historical data this vessel has availatle
from servicing these aids for many years, it is hypothesized
that the route which was scheduled for this ATON run would
be optimal or nearly optimal. The planned route for the
ATON run had a distance of 455 nautical miles. When this
problem was entered and solved by the buoytender fprogranm,
the sclution was also 455 nautical ailes. Although the
distances were the same, the scheduled route and the program
route differed slightly in their sequence for visiting the
aids. This difference may be attributed to the fact that,
as stated in Chapter 1II, the triangle ineguality may be
required to be a strict equality on some of the arcs. This
difference is possible since the buoytender may, due to the
strict equality on some arcs, ke reguired to ‘'pass' a previ-
ously serviced aid tc complete the route. Figure 5.1 shows
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Tours for BLACKHAW Problen
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TABLE 2
Results of Test Problenms

Problem & . Sclution Tour Dist. (Miles) Solution
(Ref.) Size 1Iipe(seg) Program Qptimal gQuality*
Karg (27 S S 148 148 100%
Tesg’au{h.y 3 13 22.9 22.95 100%
Baracket(27) 10 17 378 378 100%
3LACKHAW 20 50 455 455 *x
Croes(20) 20 52 254 246 10 3. 25%
HeldRarf (5) 25 72 1711 1711 100%
Karg (<7 33 121 10929 10861 100. €2%
Dantzig (27 42 188 705 699 100.86%
HeldKatfp (5 48 238 11847 11470 103.28%
Karg (27 57 340 13367 12956 103.17%
Max {auth.) 70 494 6791.07 uank. .unk
* 100% is orptimal; 1035.28% is 3.28% greater than optimal.
#* The distance 1is hypothesized to be optimal.
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= Table 2 presents a summary of the eleven test prctlenms |
gif showing proklem sizes, solution tinmes, and the quality of
{*f the solutions produced by the program. All of the run tinmes
"., are reascnakle by the criteria stated in Chapter II. The
‘, largest prcblem, 70 nodes, had a solution time of 494
- seconds, or roughly a little more than eight wminutes.
| @
[ 43
.
b -
[~
o
F.
p -
S “
l'..' & e e e L -:.- .t ..




-

e Bt e s B e Rt B - - AL SN i gl IS SN SRl AT T

Ccoputation times for the eleven problems were plotted
against frotlem size, as shown in Figure 5.2 A least-squares
polyncmial fit of the data points is

Time = .584 + .62n + .0914n2 + .000009%4n3

and this curve is alsc shown in the figure.

B. CCNCIUSIONS

The Luoytender route selection algorithm rrovides
another useful way of scheduling ATON routes. As a tool for
the operator to assist in planning the route to be taken,

the program should produce optimal or near optimal soclutions

for rrctlems up to a size of 70 aids. The user may accept

this route as is or may desire to modify the route fkased on i

circunstances requiring human judgement. Appendix A is a

user's guide for the matrix utility and buoytender route

selection prograums. ]
The Fkuoytender route selection algorithnm, with the :

nearest neighbor and k-opt heuristics, provides a quick and i

satisfactory soluticn to a symmetric traveliag salesman g

problem c¢n rroblems up to a size of 70 nodes. The prcblenm '

may have several rcutes with different seguences for :
visiting the aids, lut the routes may all have the same !
;: distance.
3 It is hoped that this algorithm will be of use to the
E. fleet cf U.S. Coast Guard buoytenders. As a decision aid it i
ﬁ may help the operators of buoytenders obtain optimal or
d nearly optimal routes to service their aids, possibly saving
ﬁf time and fuel.
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APPENDIX A
USER'S GUIDE TO PROGRANS

The intention of this appendix is to provide instruc-
tions for the use of the buoytender route selection program
and utility programs. It should be noted that pgricr to
using the ruoytender route selection program, the user will
need to use the matrix utilities program listed at the end
of this aprendix to prepare a data file.

The kuoytender route selection program and the matrix
utilities rrogram are written in Convergent FORTRAN.
Convergent FORTRAN is FORTRAN 77 compatible. The precgrams
should be typed in as presented and linked to the ofperating
systen. The Convergent FORTRAN manual has instructions
concerning compiling and linking. Recommended names for the
run files are ROUTE.RGN and MATUTL.RON. Both programs will
operate cn either a IWS or AWS station with 264K memory or
more. The programs run about three time slower on an AWS

terminal than om an I ° termipal.

The user will be reguired to enter text and numerics

into the prograns. All numeric entries are to Le integer
entries (no decimal point) with the exception of the
distance entries. All distance entries require a decimal

Foint entry for fproper input.

MATUIL.RUN is cagable of entering problems up to a size
of 100 aids. ROUTE.RUN is designed to handle problems up to
a size of 70 aids. MATUTL.RUN allows the entry of a large
matrix of aids and includes a utility which aliows the user
to select a subset of this large matrix for use in the
program ROUTE.RUN. This allows the user to type in one
large matrix and tlen create smaller matrices from the
larger as needed. This feature wi.l preclude the user fronm
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typing in a distance matrix every time he desires to run a
problea.

A. USE CF MATUTL.RUN

The matrix utilities program is designed for creating
and editing data files which will be used in the buoytender
route selection program. A data file will contain the size
of the problem n, the distance matrix for the problem, and
the names of the aids to be visited.

The size of the roblem, n, will be the number of aids
to be visited plus one. The plus one is for thke port from
which the kuoytender will start and end the ATON run.

To create the distance matrix some extensive plotting is
required. Most buoytenders have a set of tracklines they
regularly follow to visit their aids. In most cases these
existing tracklines will be sufficient to use in the
distance matrix. To create a distance matrix for entry into
a data file it is reccmmended the user use the format shown
in Figure A.1 . Distances should be computed in nautical

piles and may range from .01 nm to 9999.99 nnm. Figure A.1
is an example of a prcblem of size nine.

Since the problem is symmetric, the user need only
calculate and eater the distances as shown in Figure A.1 .
The matrix utilities will automatically complete the rest of
the matrix entries. The distance you should compute should
ke the shortest possible distance from the row entry to the
column entry. Using the example in Figure A.1 the entry in
row 3, column 6 is the shortest possible trackline frcm aid
A to aid E. Once tle entries for the distance matrix have
been prepared the user is ready to use MATUTL.RUN.

MATUTL.RON has scme simple menus and some descriptive
comments to helfp the user. The wmenus reguire a nuneric
response for the selection of an option. The first menu

presents the utilities availakle to the user, Fijure A.2 .

4e
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Figure 4.1 Sample Distance Matrix

create a distance matrix )
extract a small matrix from a larger matrix
correct a previously stored matrikx

create a hardccpy of a distance matrix .
list names witk their row number in the matrix
exit this prcgraa

1
£
3
4
S
6
]

Wwhat is your selection?

Figure 1.2 MATUTL.RUN Main Menu

S NSAAEESSs BOMMS |

1. Create a Distance Yatrix

e This utility is for the initial entry of a distance
[f matrix into a data file. The user will be asked for the
o size cof the problem, the homegport and aids names, and the
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distances. The size of the problem is the number of aids
plus one, for homeport. The utility will next ask for names
of homeport and the aids to be visited. These names will be
assocjated with a row and column number of the distance
matrixe. The names are text entries up to a maximum of 15
characters.

The utility will next ask for distances. It will
ask fcr the 3Jistance from a row number to a column number.
I1f the user sets up the distance matrix as shown in Figure
A.1 he will be able to then Jjust read each row across its
columns while entering the data. These distances must be
real nunters. The distances should be nautical miles and
may range from .01 nm to 9999.99 nm. Since these entries
are re€al numbers there must be a decimal point in each
entry. If, for exaample, the user needs to enter two
nautical miles, he should enter it as 2. {return>. Be
careful with these entries; if a decimal point is not
entered the distance will be off by a factor of 100. For
quickly and easily ertering data the numeric keypad on the
keyboard may be used and <next> may be used in [flace of
<return> to enter the data. If an error is made while
typing in numbers and <return> or <next> have not yet been
Fressed, then the error may be corrected by using the Lkack-
space key and retyping the number. If an error is made and
<return> or <next> have already been pressed, then the user
should aocte the rowvw and column number of the error and use

When the user finishes typing all entries the
program will prompt for a filename in which the data will be
stored. This name may be up to 15 characters long. If for
some reason the user needs to end the terminal session
tefore the entire @wmatrix is entered, data entry may be
stopred ty typing in a negative distance. The user will
then ke asked for a filename for the partial data file. To
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complete the partial data file the user must use the correc-
tion utility.

2. Extract a Matrix

This utility is designed so tnat the user may choose ) A

a subset of aids frcm a larger matrix. The utility will
create the proper data file for a subset of aids.

The user should have an idea of all possitle aids
which may te visited on a general buoytender run (i.e. the
spring run, the north run, the inside run, etc.). The user
should create a distance matrix usingy the create utility of

all aids which could possitly be visited on a general run.
Usually ¢nly some portion of these aids will be visited on
an actual run (for example on a particular spring run only
S0% of the aids which might Le visited on this run need to

e et

Le visited). In this case the user creates a matrix cf all
aids which might be visited on a run and then each time this
run is scheduled the user can then use the extract utility .
to quickly and easily create a data file for those aids !
which peed to be visited. '

Before using the extract utility it is suggested the

user first use the list utility on the larger or initial
data file. This will provide the user a list of aid names

el

in the data file and present them with their corresponding
Irow number.
The extract utility will prompt the user for the

BN VORI

name of the data file containing the general run's aids.

The wuser is then asked for the size of the new [froblenm :

whereky the user enters some m, m less than n in the initial )
j data file. The utility then asks the user m times for row E
; numbers from the initial matrix. After m row numbers nave é

keen entered the utility creates the new data file and askes
the user for a filename for this new data file.

| 2 Ay A e M

: |
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3. Correct a Previously Stored Matrix

———

This utility is to <correct entries 1in a distance
matrix or tc complete a partially entered data file. The
utility has a menu whicah askes if the user wishes tc¢ make
single entry or seguential entry corrections. The single
entry mode asks the user for the row number and column
number of the entry desired to be corrected. The user tlken
is asked for the new distance and is returned to the correc-
tion menu where he may select to make another correcticn or
exit the utility.

The sequential corrections are similar to the entry
of distances in the create utility. The user is asked for
the starting row number and starting column number where
correcticns are to begin. The utility asks for the
remaining column entries on the starting row and then will
proceed to the next row until entries are terminated. The
utility automatically terminates at the end of the matrix or
the user may terminate the sequential mode early by entering
a negative number. If a negative number is entered it will
not appear in the distance matix. Terainating the sequen-
tial mode returns the user to the corrections menu for
another correctican or to exit the correction utility.

Upon exiting the correction utility the user 1is
asked for a filename for the corrected file. This filenane
may te up to 15 characters long.

4. Ererare a Distance Matrix for Hardcopy

This utility 4is for preparing a hardcopy of a
distance matrix from a stored data file. The data files are
saved as sequential files, (i.e., the data files are a
string of ©bpumbers). This utility will <coastruct a file
which will resemble a matrix. Due to the width and length
limitaticns of the printer and paper, the matrix is printed
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in sections which will have to be cut and pasted together to
display the whole matrix. A hard copy of the whole matrix
will provide the user with a means of checking to sece if
data entries are correct. If an entry error is found, the
matrix also helps the user to locate the row and column
nunber of the error.

} The utility asks the user for the name of the data
' file from which a distance matrix is needed. The utility
creates the hardcopy file and then prompts the user to
obtain a hardcopy by using the FORMAT command to print out
file MATERTI.DATA.

r'“\ radxi '. ’, Cle

S. List Aid Nanmes

This utility provides a hardcopy of the aid names
P from a data file. This may be useful to the user when using
the extract utility. The user is asked for the name of the
data file from which the list shall be made. The utility
then rrepares a file containing the row numbers and their
(- associated aid nanmes. The user 1is prompted to use the
FORMAT ccmmard to obtain a printout of LIST.DATA.

These matrix utilities are for assisting the user in
creating and manipulating data files and distance matrices.
Cj A correct data file is necessary for the proper operation of

the buoytender route selection program, ROUTE.RUN.

B. USE CF ROUTE.RUN

The user of ROUTE.RUN is very simple once a data file
= has leen created. Thke user runs the ROUTE.RUN program and

: he is rrcmpted for the name of a data file. The user is
. then asked for the name of an output file for the results.
The program obtains the size of the problem from the data
file and will ccmpute an approximate solution time. This
approximate solution time is based on results from some test
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problems solved by the program and it assumes the user has
version 8.01 of the operating system. If another version of
the operating system is used the solution time may differ.

After displaying the approximate solution time the
program reads the rest of the data file and proceeds to do
the necessary computations. The user, depending on the size
of the problem, will have just enough time to get a cup of
coffee before obtaining the solution. The solution will be
displayed on the screen and will also be placed in the file
previocusly named for results, from which a hardcopy may be
made. The user now has a possible route to take for that
particular aids to navigation run.
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ARPENDIX B
SANPLlE OUTPOUT OF RUOYTENDER ROUTE SELECTION PROGR2M

The solution for data file BLACKHAW.MAT
Total tocur distance = 455.00
The tour is as follows

1 YB ISLAND

20 MOSS LBB MLA

19 MONTRY BY LB B
18 MONTEY HBR MB
17 PT PINOS LWB2
16 PT CYPRESS LGB6
< P BLANCAS LWB4A
6 SAN SIMEON LBB1
7 VON HELM R LGB4
15 ESTERO BY LWB

8 ESTERO GB10E

14 H4ORRO EY LBB1
13 PT BUCHON LWB2
10 WESTDAHL R LBB1
g SOUZA R LGB

12 LANSING R B

11 PT SANLUIS R 3
4 SANTA CRUZ 43

3 AN ISLAND LWBS8
2
1

MONTARA LWB10A

[ YB ISLAND
}

1

°

-

['.o
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APBENDIX C

LISTING OF BUOCYTENDER ROUTE SELECTION PROGRANM

MAIN PROGFIV *** RUQYTENDEP DCOUTE SELFECTINY *a#

IMPLICIT CHAPACTFR*1S (1)

REML G,TCIS, TORDIS,DIS(15)

INTFCER I,J,L,C,P,NUM,N0CD,SAM(15)

CHARACTES*13 ENZYE,CMAVE

CCMMON /MAME/ 2YAMEP(77)

COMMON /#2L¥/ N, ITQUR(71)

COMMON /TDST/ TD(70,70)

COMMON /INVT/ IT(147)

COMMCN /3IST/ 3(7¢,7C)

COMMON /SAMT/ ISTCR(1S,71)

COMMON /T™MTR/ ITPTCR(147)

CALL OBTAIN (ENAME,CNANME,N)

OPEN(2,FILE=QVAME, STATUS="NEW' ,FORM="FORMATTED")

TORDIS=00000, 99

CALL NODE (N, NUM,Saw)

CALL “BR(NUM,SAM,0IS)

DO 7 L=1,5
DC 3 J=1,u+1

ITCUR (J) =

COMTINUE
CALL “AR¥D()

DO 1pr o=1,¥

CALL TREFEP(Q)

ISTOR(L,J)

R=0

I=1

IT(1)=ITOUR({1)
IT(2)=1TOUP (2)

JALL OSELCTY(ILC,G,NeD)
I=1+1

IF(G.LE.(0.7A01)) COTOL1N

CALL ADJTCR(I,R,NOD)

GoT 137

IF(P.EQ.1)G0TOL1QR

CALL ©TVTOR (R)

GOTC12"™
TDIS=7.7
DO 147 J=1,V

TDIS=TDIS+D (ITOUR(J),ITCUR(J+1))
COMTINTE

IF(TDIS.CF,TOPDISYCGATNT

- -t - S
LY 5 J=1,Nal
TQTA -
ISTCR(1,2)=1TCUR (D)
COoNTIVUS
ol CNTIVOE

S4
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CPMAT(1X,

END

I3

Xy A)

SUIBpAUTIVE COTAT (C‘NY’A‘IF‘"\,‘.:A‘VF’
IVNLTAIT ﬂv\pwmr‘-pp*l:—‘ (\)

IYTEGEF
REAL TI™M

~ipc -
CHARAZTER*] =

SNNE/

Nl
SOUMCN

N
A

F

diea D

(AR ] vy
AME, OvaMT
ANBME (TN

)

‘..\ - L a0 aBa saen Aows v g ™ T T kR At TP Y Y rLWNITT Y TR T Y Y DS o 8 " o AR o T T
.
.
-
f'
; .
N
-
- 7T 2% I=1,N+1
. ITC(R(I)=IS”0R(1,I)
. 27 CCNTIVTE
b CALL TPPREP(1)
“.Y*E(*,Z?) FrAMEe
: WRITF(2,22) rmauave
g WQI"?(*,BG) TOoRDI
~PITE(2,32) TAFDIS
mRI E(*,21)
”P TE(3,21)
RITE(*,32) (TTOUR(T) , 2 AMF(ITOUR(T) ), I=1,'+1)
c”“’(3,32)(I’I‘C*‘.?‘?(I),W‘!A"E(]f".“(‘*UE?(I)),I=1,t\'+l)
oo
20 "OD*A"IIY T2 sclution for data fila ',A)
3" ECORMIT (1X, ?ot11 “our -listance = ',Ff.2)
31 FORPMIT(1Y,'Th2 tour is as follows:')

CCHMMCN /nTSeT/ C(7a,7M)
WPITE(*,6)
TEAT (% 7)) SuavE
WRITE(*,®)
f{E.‘..f)(*,7) cNAE
CRENA{E, TILT=FYAME, TAPY'FCIVMATTED ")
PEAD (4,0, FRE=14)
TIME=,5%4 4+, 52%% 4 _ MQlA* k&) 4 NOANAQDARN k%7
SRITI(*,17)y TIvEe
FRITE(*,1 1)
PEAD(4,12,50r =1 4) (DT, 2y ,J=1,' ,I=1,")
FTAD (4,7, 27p=11) (2vAavE(TYy,I=1,V)
CLOSF (4)
TrTenN

_'r;f"r‘(*IW,:\

ST L
TLITE ()

STCO
TORYAT(LY, ' UnFar w13t file nam2 is tae diskans atriv? '
FrovaT (v
TOTAAT(LY,'T1'> nor3 for the rasulss? ')
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9 TORMAT (1)

1T FOPMAT(LX//1X,'It will take aonroximataly ',T8,2,' s:zconts')
11 FORMAT(1Y,'tc 30lve tnis nronsler., Plaiss w3it.'///)

12 SARMAT(FT.2)

15 TORNMMT(1X,'Frror ucon loazd')

(@]
™M
o

SUBRNUTING NCDE (N, DM, 53%)

IMTECDR M,J,X, ITFVP,NUM,SAM(15)

CCMeN /RAND/ TX,1Y,17

[X=1524%

Iy=28asn

17=30179

NEM=S N INT(2.0%ALOG(TLOAT (M =-4)))

CC 2 J=1,%1M

3 ITOMP= INT(RANDAM(] . M) *FLIAT(N))

IF(ITEMP.EC.M)CCTO

F=0

DC ¢ K=1l,NCM™
IF(ITEMP,FT.SaM(X))F=1
4 CONTINUT
IF(F.EZ.1)CrTC?
S:\\A\"(J) =ITF\'P
S YA et
£ [N SN
RETUOY
LA
SURTACTICT o NT e (N, S0V, DI
IVTECT: MU, 1,0,%, INCOE, I77VP, L, 3 (1 7)) ,Nary
REAL T¥vPD,"TS8(1 %)
SO VALK N, ITONR (T
TV /IS (ST, T
CruMOoN 7ZAMT/ IE87T0R (19,70
ToVMON JTReT TR, T
Lo 170 L=1,00v
INOCT=5AM(IL)
cC 20 1=1,M
o627 J=1,M
T,y ="2 (1,2
27 [T AR o
T, INTTEY=C229,22
[oal ~ e
. b
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' TEVMPN=TO(ISTOR(I.,I),1TEMP)
| DC 22 J=2,N
. IF(TD(ISTOR(L,I),J).CF.TEYPR)COTC22
ITMP=J
TEYED=TD(ISTOR(L,I),J)
22 CONTINTE
ISTOR(L, I+1)=ITF¥P
CIS(L)=0TIS(L)+TFEMDN
o0 23 w=1,N
T3(K, ITEMP)=0nao_na
212 €

21

lﬂ
205

N EO
. by
>

r

T T e
rr o

RS an ae A g8
A

"

FE

n
e

SUBROUTINF

ZonTINaE
CONTINUE
ISTOR(L,N+1)=1I
DIS(Ly=DT1S
CONTINUE
NCerxX=1
CO 210 I=1,v0mM-]

IF(DIS(1) .FO.DIS(I+1))DIS(I+1)=000Q00 A0Q

IF(DISH{I).LF.CIS(T1+1))50CT0N21"

MCEX="

TIMPD=C 7S (1I+)

CIS(I+1)Y=DIS(1)

DIS(I)=TFv
>c 227

STAR(L, 1)

(LY+D(T1STOP(L,N) ,ISTOR(L, 1))

ISTAR(T, ) =ITFYD
SAVTINT
SANTINCE
F(NOEX.
TURY

NFL1)CGOTe

A

TPPREP (C)
INTEGER 2,J,%

CCMMON /WALE/ M, ITTUR(71)
COMMON /TMTP®/ ITPTOR(147)

=.1

(%

DC 48 w=1, v
ITPTOR () =T 7002 ()
ITPTAR (K+N) =ITOUR (K)
IF(ITPTOR (Y .0 2. C 1=X

TouTIve

OC 41 V:]"_'

ITCCR (#)=1TPTAR (T+7=1)

IinTIivee
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ITTUR(N+LYy=IT R (1)
RETU?N

END

(@)

SUBRDUTINE “Ar#D ()

I*TFCFQ J, %

f“‘n'\-m\v ,/"uil.[,”
S

¥/ \:’T'?'(‘r!Q('rl)
COYMON /TDST/ TD(70,77)
DOORT 3=,
IDIOT-D BES IFEN
T2H(I, ) ==1.7
- 51 CoNTiINyE
! To(I,Jy=1.¢C
on ~ v I
o 57 CONTIVUE
N ™ bl - Ay
b . S0 T2 S=r, el
Q TO(ITOUR(J) ,ITOUR(J+1))=1.7
o TC(ITAUR(S+1),ITOUR(I) ) =1.17
3 52 TONTINGT
- TS(ITRU2 (M), ITOUR(LY)=1.0
- T2(ITRCE (WY, ITO0R (M) ) =17
3 SETUPY
4D
o
SUBPAUTINT 3CLCTVY(T,C,C, N0
INTECER I,C,V,?,COL
. o~ - -~ ) - ~ - -
TRTECTE 7,27V 3) ,3TLA(S) , V(%) ,N00
FRAL C,TIP,5Y(3),SLA(S),5T0F, TARPAY (T )
SONUMAN SRALK/ N, ITCUR (7))
STHMON /TRET/ TR(TO,T
= Covr il JINVT/ TT(147)
ﬂ CoMMoN /21877 (70,70
. ~-Nn 2c -
: 20 RE I=1,
= TIREAY(J)=TR(ITRAUR (D), )
_ rc [aFa ¥ Nl ay ool
... i - -t e
o oC 27 ¥=1,5
- F="
s TEME=7Q7n an
o ST 51 3=3,¢
: IF(O(IT UR(2),ITOUN(T) ) .CRLTEVE) T2700]
I (TATOAY(TTANR(T)) JCT. . 7 OATAG]
TEMP=0(ITAR(2) ,ITOUR(T))
=3
~ 1 v .
ol oy
o
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ad
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Lad
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s

P .

.

- ]

GeTCe

TARTAY(ITCOUR(F) ) =1.7
JY(K)y=TFMp

SLA(F)=D(ITCOUR (1) ,ITCUR(2))=D(ITOUP(F=1),IT CR (1))

STUAK)=ITCUPR (F)
STLA(R)=ITCUR(F~1)

SLA(K)=SLA(X)+D2(IT2UR(F) ,ITCUP(F=-1))=-SY (%)

ND(F)=F-1

M=V
TonNTINCE
STCpP=1,7"

IP(M,EQ.7)STOP=0029 99
TEMP=3SLA(1)
CcL=1
2C 57 K=1,¥
IF(SLA(K) .LE.TFMP)COTEARR
TEMP=S LA (K)
CCL=K

CCNTINUE
C=ZLA(ZCL)Y+STCP
NCD=NT(C2L)
IT(C*T+1)=STr(2CL)
IT(2*1+2)=STL>(ZCL)
PETUPY
ZND

SUBRCUTIYF ADJTTR(1,D,NCD)
[ TeECEPR 1,J,R,NCH
SCHMEN ALK/ N, ITenr (71
e /TRST/ TD(I7,77)
Covvor JINVT/ IT(140)
ol /TMTr/ ITPTOR(147)

ole S=2,NCD

PTCT (MOD+2-J)=ITCUR (J)
CoNTINUE
20 3=

—~ N
-
~
nw o

ce
v
i

1
17
TI
£2
ITOUS TET2R (J)
CONTINIF
TI(IT(2%1-2),IT(2*%1-1))=1,"
TO(IT(2%I-1),IT(2*I-2))=1."
TC(IT(2*1-1),IT(2%1))=1.7
TOULT(2%1),IT(2*%1-1))=1.7
TZ(IT(2%1),1T(1))=1."
Y
prTURY
ene
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SUTRAUTING PEVIOT (R)
INTFIER ¢
SOUNMON /NALK/ Y, ITAUD (7))
CoMNON /THIR/ ITPTAD (] 4m)
SC 7T z=1,M41
ITPTCR (N42-J)=1700F (J)
97 TTNTINGS
DO 21 J=1,M+1
ITCUP(J)=1T2TCP(])
91 ToNTINUE
R=1
RETUP®
TND
FUNCTION Pavn0v ()
REM[, TEvp
COMMOY /RPAND/ 1V,1Y,12
I¥=171%20 (1K, 7"”)-7*(rv 177)
IY=172*v0n(1yY, “f)-2*(I{/1’6)
IT=170%M30(12,172) 0% (17/1
IF(IX.LT. “)IY IX+20249 R
IF(IY.LT.") f=1ye10207
IF(IZ.LT.7)17={7430722
TE¥DP=FLOAT(IX) /’"“’9.“+FLFKT(IY)/?73“7.’LFL“A”(I SIVATAD Pl I
uﬁhscv=ﬁvon(rrvp,..o)
RETLRY
£
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[ & APPENDIX D ‘
v LISTING OF MATRIX OTILITIES PROGRAMN

XEE DISTINTE CATPIX UTILITIES *%«
[MPLICZIT CHH RACTER*1S (A)
INTETFR IANS
CMMON /RIST/ S (17,100
CCMMON /NAMF/ ANAYFR(177)
WRITE(*,1)

RITFE(*,2)
WRITE (*,2)
12 WRITE(*,1)

WRITE(*,S)

WRITE(*,6)
WRITE(*,7
WRITF (*,8)
NRITE(*,9)
SRITE(*,10
READ(*,11) IAvS
IF((IANS.LT.1) . OR.(IaNS,CT.5))CGCTOL2
IF(IANS.FQ.1)ZALL YATPIX()
IF(IANS.EQ.2)CALL EXTRCT()
IE(IANS.FQ.2)CALL COPECT()
IF(IANS.ED.4)CALL MATPRT()
IF(IMNS,TQ.8)CALL LIST()

0

[ " IF(IANS.NE.5)C0TN12

- STCP

. - 1 FCRMAT(1X,'This is a set of utilities t2 be us2d with')

o 2 FORVMAT(1X,'the 2rograr PCUTE.RUM, They are to =21p ')
EE z FCRMAT(1X,'cre2ate and manioulate a “distancs ~atrix.')

2 FORMAT(//1¥%,']l - create a 7“istznc=2 matrix')

O S FOFMAT(LY,'2 - =2xtract a small ratrix frem a largjer watrix')
= ) FOEMAT(1X,'3 - correct a nraviously stor=? mnatrix')

- 7 FOPMAT(LY,'4 - cra2ate a hardcony of a distansa matrix')
éfl 2 FOPMAT(1Y¥,'S - list names with thzir row numbar in matrix')
. 9 EORMAT(1X,'5 - 2xit this »rojrat')

<l 12 IORMAT(//1X,""hat is your s=2lection? '\)

- 11 FORMAT(I1)

[ END

[

b - SUPRCUTINE YATPIN()

[ IMPLICIT CHARACTED*]18 (a)

® REAL DIST

< INTOCER N, I1,J,L

COoMMAN /RIST/ T(177,177)
COMMON /MAVME/ ANZMP(170)
WRITE(*,21)

READ(*,22

ARITE(*,33
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CO 4 1=1,N
WRITE(*,3%) I
PEAD(*,26) ANMAMEL(1)
24 CONTINUE
WRITF (*,37) *1,N

2
WRITE(*,3
DC 29 1=1

DO 43 J=I+1,N
WRITE(*,41) I,J
READ(*,42) DIST
D(I,J)=DIST
CO 177 L=1,1007

129 CONTINLUF

D(J,I)=NTST
IF(DIST.CF.()GOTOAT

J =

I=N-1
41 CCONTINUE
39 CONTINUE

D(N,%N)=0009 a0
CALL STOPRE ()
RETURN

31 FORMAT (//1X,'How large is the proble~? '\)
32 FORMAT (BN, I2)
33 FORMAT(//1X,'Input names for noreport and aids')
253 FCFMAT (11X, 'Ylurber!' ,I2,' MNama2? '\)
245 FECPMAT (A)
37 FCRPYAT(LX,I2,' Y ',I12,' Matrix')
32 TORMAT(' Innut Yistances fror »oint T to noint J')
11 EARPMAT( Distanc2 frow ot ',I13,' to ot *',I2,' = '\)
42 TCFPMAT(BY,FP7.2)
END
SCRRCUTINFE EXTPCT()

IMPLICIT CHMARACTCR*135 (3)

INTECER N,¥, 1,0, IR0 (1C7)

PEAL SD(177,170)

CHARACTFR*1S nravyMm(1rm™)

COrMeN /218T/ D(173,177) |

CCrey, /uavey LANAMT(ITY

WRITE(*,17)

ARITF(*,11)

WRITE(*,12)

WRITE(*,12)

CALL oRTAIN (M)
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GRITE(*,14)
FIac(*, 171
ZC 27 1=1,r
ARITE(*,21) I
21 FORMAT( 12,° Row nuvontr fre~ nain tatrix: '\)

) =D (IROW(I),J)

29 COMNTINCE
;\Q\A\“A(I)zp“ AME(IRCW (1))
20 C2NTINGE
e 27 7=1, P
nCo24 1=1,M
D(I,J)=30(1, 172 (J))
4 ZONTINDE
2(J3,J3)=922"7,19
AMNAME(J)=asvnv ()
23 CONTINCT

17 TCRMAT(//1¥,'To craate a 3mallar natrix from your main')
11 TORMAT (1Y, listanc: ~atriy, a2ntor t- - row nursers of')
2
2

1 TOARMAT(1Y,'main -at-ix i7s which o da2sire in the ')
17 TORMAT(LXY, "smaller ratrix')

14 rCP”A"(//"V '3t 1S thz s3ize of the smallar wnatrix? 'N\)
1 \m('—nv I)\

v
()

U"

At
L.

Ve

FIEPOUTLIE CORRCT()

LI&IT CUARASTEERE*1S (
I“*:CT? Ve T, 3,8, IMNE, IR,

)4 —

PENL TIST |
I0VMON SDIET/ o1, 1)
COMNN /MAVE/ ENAME(LTT)
CALL CRTMIN(Y)
WRITE (*,14)
KRITE (*,1%7)

1% WRITE(*,17)
WPITF (*,17)
READ(*,17) 143
IF(IANS.FT.3)C T02s
IE(IAYS,FQ,2)rnT 28
IF(IANS.NF.1)CaTR1A
SPITE(*,21)
PEAC(*,12) IT
APITE (*,27)
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READ(*,12) IC
SEITOA(*,2%) 1R, IC ' D(IR,IC)
NRITE(*,21)
SEAD(*,12) ni1gT
D(IR,IZ)=D18"7T
o0 10y v=], 1000

AR CONTINUE
D(I1C,IR)=215T
crTol1%

25 ARITE(*,

32

[
14

JA
IT
T
i
1‘7
1:
-
13

-

1

SN L e ]

DIPS N PR =k~ -
A S I W)

<

~— —

(*,12) 12
5C 27 I=TR,M-1

20 21 J=IZ,N
WRITF(*,27) 1,3,0(1,J)
WRITE (*,24)
RE"D(*,1%) DIST
IF CIST.CF.{. 7)GOTO2
I=N
3=x
ceTarl
D(1,3)=DIST
o7 11r %=1, 10an
CONTINLD
D(J, 1)=DIAT

CONTIVIE

IT=T+2

DI SRS
~m ~
PR S RRE

2N, 12)
FORMATIF7.2)
TCRMAT (//1%¢,'This utility is €
STAMAT(IX,'3 ~r-oviously storad
FAIMET(LY,']l ~« Zingle ontrias
FOFMAMT(LX,'2 - I'xit -orroction

Fﬁfn-\yh(l

’:‘\A/ -_--\'H(l\' 'T

?(\—,\.- ﬁ(]

FOMAT(IN, ' oy
FrovAT IV, tr,

’--"f"‘\"\"’(Tl

Y

~ O

“a3ta fil

-~
<

ct '\)
rr=ct '\
o' ,I2,Y to

,\rr- ~0-'1-»-

2
- Rarmy.

A

[ Te B

nx;

ntisl =ptriss')
ticn:'h)
K?" = .'TT"")

tiva dilstsncot)

3
4
4
d
A

L
L I

4G LA -

R - STt e e e [T N IR I Tel et “ T e .
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- e =
. .

g . EORMAT(LY,'"Starting row numder '\)
- 22 TOENAT(LY,'Starting celurn nurkor PN)
N7
SUBRAUTINDG MATDRRT()
TUPLICIT ZHARATTER*YIS (1)
INTECER I,T3,48,15,18,358,0F
COMMZYN /DRTIT/ D(17, 10
CCMMON /NAYTE/ XVAME(L D)
WRPITE(*,2)
SRITE(*,4)
SRITI(*,5)
SRITF (*,6)
CALL R TaATIM(N)
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O IT(JS.LT.N) GCTHO
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S'- IE=§E+%’

[ IF(IE.GT.Y) IE=V

. IF(IS.LE.N) CoTOT

[ CLOSE(3)
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- INTEGER N, 1,J

3 CUHARRZTEN*] T TUAME

g S AN A e R Nedas) +

¢ COMYIN /I DL, 1)

d CovYON /UIME/ ANAVE(LDT)

0 SPITT(*,1™M)

- FEAT(*,11) Fuavr

s APEM(4,FI[F=T \“F,FARM='OAOM I TTEN )

T ol i A - N

L READ(4,12,T7P=14)

o READ(4,13,E7r=14)y ((2{1,3)y,3=1,,1=1,")

QEAD(4,11,E02=14) (ANAYE(T), I=1,%)
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CLOSE (4)
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